
Compro Computer Services, Inc.
105 East Drive
Melbourne, FL 32904
Telephone: (321) 727-2211
Fax: (321) 727-7009
www.compro.net

Real-Time Environment (RTE)
Technical White Paper

Achieving Real-Time Deterministic
Processing with Open Systems

October 2007

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 2 of 14 Compro Computer Services, Inc.

Notices

©2007 Compro Computer Services, Inc. All rights reserved. No part of this document, including text, code examples,
diagrams, or icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or
otherwise) without the prior written permission of Compro Computer Services, Inc.

Information in this document is subject to change without notice. Compro Computer Services, Inc. may have patents or
pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this
document. The furnishing of this document does not give you license to these patents, trademarks, copyrights, or other
intellectual property. Please send licensing inquiries to: Compro Computer Services, 105 East Drive, Melbourne, Florida
32904.

Limit of Liability/Disclaimer of Warranty: This document is licensed and/or sold “as is” without warranty of any kind, either
expressed or implied, regarding the contents of this document, including but not limited to implied warranties for the
book’s quality, performance, merchantability, or fitness for any particular purpose. Neither Compro Computer Services,
nor its dealers or distributors shall be liable to the purchasers or any other person or entity with respect to any liability,
loss, or damage, caused or alleged to have been caused directly or indirectly by reliance upon the contents of this
document.

Trademarks

Compro, the Compro logo, and other branded items are trademarks or registered trademarks of Compro Computer Services, Inc.

Ethernet is a registered trademark of Xerox Corporation.
Linux is a registered trademark of Linus Torvalds.
LynxOS is a registered trademark of LynuxWorks, Inc.
UNIX is a registered trademark of The Open Group.

All other product, service, and company names are trademarks or registered trademarks of their respective owners.

Compro Computer Services, Inc.
105 East Drive
Melbourne, Florida 32904

Pub. No. 204-360-03

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 3 of 14 Compro Computer Services, Inc.

Table of Contents

INTRODUCTION ... 4

REAL-TIME AND THE NETWORK .. 4

WHAT IS REAL-TIME? ... 5

REAL-TIME WITH FRAME DRIVEN AND EVENT DRIVEN INTERRUPTS .. 6

WHAT MAKES A COMPUTER A REAL-TIME COMPUTER? .. 7

INTERRUPTS: FRIEND OR FIEND? ... 7
INTERRUPT LATENCY .. 8
INTERRUPT LATENCY DETERMINISM ... 8
INTERRUPT VECTOR MECHANISM ... 9
REAL-TIME CUSTOM INTERRUPT ENVIRONMENT (RCIE) ... 10
EXECUTION DETERMINISM ... 10

SYSTEM PERFORMANCE ... 11

EXAMPLE OF NON-REAL-TIME SYSTEM .. 11
IMPROVING EFFICIENCY... 12

REAL-TIME ENVIRONMENT (RTE) SOLUTION ... 12

HIGH PERFORMANCE INTERRUPTS ... 12
REAL-TIME CONFIGURATION.. 13

SUMMARY .. 14

Table of Figures

FIGURE 1. FRAME SCHEDULING INTERRUPT .. 6
FIGURE 2. EVENT SCHEDULING INTERRUPT ... 7
FIGURE 3. INTERRUPT LATENCY .. 8
FIGURE 4. INTERRUPT LATENCY DETERMINISM .. 8
FIGURE 5. INTERRUPT LATENCY WITH/WITHOUT SYSTEM INTERRUPTS .. 9
FIGURE 6. TARGET REAL-TIME PROCESSOR ... 9
FIGURE 7. REAL-TIME CUSTOM INTERRUPT ENVIRONMENT .. 10
FIGURE 8. CODE EXECUTION DETERMINISM .. 10
FIGURE 9. INTERRUPTS DURING CODE EXECUTION .. 11
FIGURE 10. FRAME OVERRUN .. 11
FIGURE 11. SYSTEM EFFICIENCY IMPROVEMENT ... 12
FIGURE 12. REAL-TIME ENVIRONMENT (RTE) ... 13
FIGURE 13. EXECUTION DETERMINISM .. 14

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 4 of 14 Compro Computer Services, Inc.

INTRODUCTION

UNIX-style (UNIX, Linux) operating system environments are robust, versatile and well suited for use in
business and scientific applications. However, the UNIX Universal Time Share Executive Process Scheduling
Mechanism is not ideally suited for applications requiring very fast, predictable process execution such as
hardware-in-the-loop and human-in-the-loop simulations. A scheduler suitable for real-time applications must
execute processes with a “priority-oriented preemptive mechanism” for repeatable behavior and efficiency.
This is necessary for today’s high-performance, real-time simulation systems.

Simulator examples include high fidelity Weapons or Flight Systems Trainers. These systems must
accurately represent the real device. When a simulator provides good fidelity (that is, the simulation and real-
world are nearly indistinguishable), it “positively” trains a person resulting in specific, desired behaviors. If a
simulator lacks fidelity, undesirable behavior modification may result in a “negative” training experience.

Some proprietary operating systems target embedded computer systems, requiring a completely different
environment for simulation code development. Two examples are LynxOs® and VxWorks. With Compro’s
value-add, UNIX style operating systems now deliver real-time determinism; real-time programmable
hardware clocks, multiple external interrupts and a fast interrupt vectoring mechanism. This unified
development/execution capability eliminated the need for LynxOS or VxWorks. You can now develop, test,
and deploy real-time applications entirely on Open System platforms while enjoying scalability, compute
power, and a world-class software suite.

Compro’s value-add is the Real-Time Environment (RTE) consisting of PCI Real-Time Option Module(s)
(RTOMs) with Real-Time Executive extensions. Compro’s RTE and POSIX-compliant operating system
combination provides a complete support package. This allows the software engineer to:

• Control when actions will occur.

• Connect actions to time-based triggers.

• Schedule multiple tasks using a strict, priority-based FIFO mechanism.

These ensure precise and efficient critical real-time task execution.

This white paper explores computer system behavior and how UNIX-style operating systems using Compro’s
Real-time Environment (RTE) address the high fidelity simulation community’s requirements.

REAL-TIME AND THE NETWORK

In Distributed Interactive Simulation (DIS) environments, real-time events and user interaction often cause
message passing across an Intranet (LAN), Internet (WAN) or between processors in a Symmetric Multi-
Processor (SMP) environment. These messages represent critical “data exchange” essential for an
application’s realistic real-world representation. In a distributed non-real-time system (such as an office
environment), computer architects view keyboard input queuing, mouse operations, or network packets as
more important than critical data exchange.

Non-real-time systems immediately respond to non-critical events at high priority. In this environment,
network message processing with First-In/First-Out (FIFO) precedence is essential for “equitable
responsiveness” to multiple users. This methodology assures that all users obtain reasonable response

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 5 of 14 Compro Computer Services, Inc.

times, providing the illusion of “near real-time” performance. However, used in simulation system design this
methodology is detrimental to process determinism, simulation fidelity and reliable data collection.

Message passing, through TCP/IP and similar mechanisms, creates tremendous overhead for processors
and networks. Message interrupts impose significant CPU loads through process scheduling mechanisms,
protocol handshaking and data integrity assurance (that is, packet retransmission). Any time an Ethernet
packet arrives, it must be filtered or locally queued.

In response, the process interrupts the CPU for message processing. In addition, TCP/IP delivery
mechanisms generate signals (interrupts that require scheduling and servicing), further consuming precious
computing cycles. Standard UNIX style operating systems are designed for processing thousands of network
messages and simultaneous user inputs from keyboards and mice, with little regard for system resource
utilization (such as CPU cycles) critical to simulation code execution.

Open system SMP technology supports key components that solve interrupt management problems. These
operating systems use a multithreaded kernel permitting simultaneous multiple processes execution. The
kernel protects key data structures and critical code with semaphores and spin-locks, preserving their
integrity. Processes executing in a multithreaded kernel can be forced to relinquish the CPU; in other words,
processes can be “preempted.”

In a preemptive environment, the kernel can transfer CPU control from a lower to a higher priority process.
This permits a high priority process, waiting for an external event, to respond immediately when the event
occurs — even if the CPU is currently in use. This is a significant benefit in real-time architecture.

WHAT IS REAL-TIME?

According to the POSIX 1003.1b standard, real-time in operating systems is defined as:

“The ability of the operating system to provide a required level of service in a bounded response time."

All modern Commercial-Off-The-Shelf (COTS) computer systems have approximately one nanosecond or
less CPU clock cycle times while their associated operating system software runs at approximately one
millisecond cycle times. This means COTS computers have operating system software one million times
slower than the raw capability of their processors (see Table 1). This does not promote real-time
performance.

Table 1. Time Reference Table

Description Part of a Second Cross-Reference

Millisecond (msec) .001 1/1,000 10-3 1/1000 of a second

Microsecond (μsec) .000001 1/1,000,000 10-6 1/1000 of a millisecond

Nanosecond (nsec) .000000001 1/1,000,000,000 10-9 1/1000 of a microsecond

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 6 of 14 Compro Computer Services, Inc.

Today's demanding real-time applications must capitalize upon raw processing power beyond standard
operating systems. Processes that must complete in microseconds cannot be timed and controlled by
software that operates in milliseconds.

Real-Time with Frame Driven and Event Driven Interrupts
The following two examples are common interrupt methods used in real-time systems.

• A Frame Scheduling interrupt (see Figure 1) gates process execution at a predetermined rate. This cyclic
interval is a “frame.” Real-world examples of “Frame Driven” scheduling interrupts with various driving
frequencies are shown in Table 2 below.

Figure 1. Frame Scheduling Interrupt

Table 2. Example Frame Rates

Example Function Frequency Frame Time

Missiles, Sensors 4800 Hz 208 μsec

Digital Control Loading 1000 Hz 1,000 μsec

Flight Simulator 60 Hz 16,667 μsec

• An “Event Driven Scheduling Interrupt” (see Figure 2) is random asynchronous missile firing, simulating a
missile launch and/or missile hardware stimulation that interacts with a fixed simulation platform (also
known as Hardware-In-the-Loop, or HIL).

Time Scheduled Process (Frame Driven)

frame 1 frame 2 frame 3

time

Scheduling Interrupt

Real Time Task 1 Real Time Task 1 Real Time Task 1

Example: 60 Hz Simulation (16.67 millisecond Frame)

Scheduling Interrupt Scheduling Interrupt

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 7 of 14 Compro Computer Services, Inc.

Figure 2. Event Scheduling Interrupt

WHAT MAKES A COMPUTER A REAL-TIME COMPUTER?

In real-time computing systems, the architectural objective is reducing the number of interrupts and managing
asynchronous event response in a predictable fashion. To achieve this objective, synchronous events occur
at consistent intervals, and operating system housekeeping tasks (such as moving the cursor) occur using
spare processing time. This permits the simulation programmer to:

1. Have the computer perform the work for which it was purchased.

2. Keep operating system “housekeeping” functions in good working order.

3. Manage processes indirectly related to the applications.

For these reasons, problems related to “determinism” and the way all software reacts or contributes to
“indeterminism” must be controlled. Giving engineers control over interrupt latency, interrupt latency
determinism, and machine-level code execution determinism are major factors in controlling an
“indeterministic” system.

Interrupts: Friend or Fiend?
As its name implies, an interrupt stops an executing CPU process and switches execution to the interrupting
process. This is called a context switch.

When an interrupt occurs, the operating system must obey a set of rules to maintain functional integrity.
These rules keep the operating system kernel responsive to all events within its design capacity, resulting in a
“friendly” system. If the rules are bent to improve system performance or exceed system capacity (that is,
attempting real-time performance), the computer may misbehave and possibly crash with little explanation.

In a typical distributed architecture, operator inputs compete for CPU cycles. Additionally, network requests,
data packet exchange, disk and graphic I/O, all compete for CPU cycles. Servicing these tasks has a
“fiendish” impact upon real-time performance. Part of the solution for more manageable applications and
better overall throughput in a real-time application is a multiple processor system. However, it takes more
than multiple CPUs to achieve acceptable real-time performance. Interrupt latency, as discussed below, is
another factor.

Response to External Stimulus (Event Driven)

event 1

time

External Interrupt

Real Time
Task 2

event 2
Real Time

Task 2

event 3
Real Time

Task 2

External Interrupt External Interrupt

Example: Random Event

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 8 of 14 Compro Computer Services, Inc.

Interrupt Latency
Interrupt latency is the time period between a received interrupt and associated user code execution. For
example, when a cyclic scheduler fires a scheduling interrupt at the beginning of each frame (t0), there is a
delay before the frame code begins execution (t1). (See Figure 3.) This delay is interrupt latency.

The shorter the interrupt latency, the less the CPU is consumed with interrupt processing. This means more
CPU cycles are available for processing useful application code before the next scheduled interrupt.

Interrupt latency is often confused with an incomplete measurement called interrupt response. Interrupt
response is only the time required for interrupt receipt and kernel queuing [t0 + (t1-n)]. Interrupt latency
includes interrupt response time, plus queue processing time, plus time until user code execution.

Figure 3. Interrupt Latency

Interrupt Latency Determinism
Determinism is consistency. Interrupt latency determinism is the consistency of interrupt latency each time
the computer responds to an interrupt. Most vendors advertise their best achievable interrupt response or
interrupt latency time. However, this period can be as short as 10 microseconds or as long as 10
milliseconds in the same one-frame period. (See Figure 4.)

Figure 4. Interrupt Latency Determinism

In terrupt Latency

tim et0 t1

U ser
C ode

K ernel
C ode

Scheduling Interrupt

Interrupt
Latency
L1

frame 1 frame 2 frame 3

time

Scheduling Interrupt

Interrupt
Latency
L2

Interrupt
Latency
L3

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 9 of 14 Compro Computer Services, Inc.

As shown in Figure 5, typical operating system design exacerbates interrupt latency by consuming processor
cycles with aperiodic queue management and assorted system “housekeeping” interrupts. In real-time
applications these interrupts create control problems when minimum interrupt latency and solid determinism
are essential.

Figure 5. Interrupt Latency with/without System Interrupts

Interrupt Vector Mechanism
Part of the solution to this control problem is a “tunable pre-emptive” microkernel for quicker real-time
response. The microkernel schedules tasks on separate processors using a fast real-time interrupt vectoring
mechanism.

A tunable microkernel with a fast vector mechanism gives the applications programmer processor utilization
control. If an external real-time event needs immediate attention (such as a cyclic interrupt) the event will
interrupt the designated processor and execute code per application program design. This is done without
waiting for the standard UNIX style time-share scheduler to allocate a servicing time-slice.

Figure 6 illustrates two CPUs: one targeted for real-time applications (CPU 1) and the other for general
system UNIX style functions (CPU 0). CPU 0 fields aperiodic interrupts and manages the Real-Time Option
Module (RTOM), which triggers periodic real-time tasks in CPU 1.

C
PU

 1
C

PU
 0

RTOM Interrupt vectoring

time

User
Code

Kernel
Code

Scheduling Interrupt

Target Real Time CPU(s)

UNIX CPU(s)

Figure 6. Target Real-Time Processor

System Clock

Latency with no interrupts
Latency with several interrupts

Disk

Other I/O
Ethernet

time

Scheduling Interrupt

User Code

System Clock

Latency with no interrupts
Latency with several interrupts

Disk

Other I/O
Ethernet

time

Scheduling Interrupt

User Code

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 10 of 14 Compro Computer Services, Inc.

Real-Time Custom Interrupt Environment (RCIE)
Also available is the Real-Time Custom Interrupt Environment (RCIE) that can deliver extremely low latency
interrupts with maximum determinism. (See Figure 7.) This customization facilitates user code insertion at the
kernel level (interrupt service routine) and can provide shared memory interaction with a user-level
application. “Ready-to-run” examples permit rapid RCIE implementation.

Figure 7. Real-Time Custom Interrupt Environment

When used judiciously, this powerful capability can provide significant performance enhancement. Care must
be taken while RCIE code is executing, because this is a system interrupt level and nothing else happens in
the system until RCIE code completes. More than a small amount of code, repeated many times, can cause
excessive overhead.

Execution Determinism
Execution determinism is defined as the variance in user code execution time each time a specific program
runs. See Figure 8.

Figure 8. Code Execution Determinism

tim e

User Code running at kernel level

Scheduling Interrupt

User Code running in ISR (Interrupt Service Routine)

(RCIE is Encore’s Real-Time Custom Interrupt Environment)

RTOM Driver

Execution
Tim e E1

fram e 1 fram e 2 fram e 3

tim e

Scheduling Interrupt

Execution
Tim e E2

Execution
Tim e E3

User Code User Code User Code

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 11 of 14 Compro Computer Services, Inc.

Variance occurs because the operating system performs different housekeeping tasks when diverse
interrupts occur (like processing TCP/IP message traffic). With respect to application code execution, the
operating system is designed for asynchronous interrupt response. Although the system clock is
synchronous, peripheral I/O, network traffic and other system elements generate asynchronous interrupts
resulting in code execution time variance. (See Figure 9.)

Figure 9. Interrupts During Code Execution

SYSTEM PERFORMANCE

Example of Non-Real-Time System
When a simulation system includes a “Hardware-In-the-Loop” (HIL) device, inadequate spare frame time can
profoundly affect performance. For example, in actual Mil-Std 1553 implementations, the real-world device
expects certain stimuli and response times.

If the simulated system does not precisely mimic the real-world device, the simulation is ineffective. This non-
deterministic behavior is sometimes called frame overrun or frame jitter. In visual simulation systems, this is
observed as a jerky or flashing image. Figure 10 illustrates this problem.

Figure 10. Frame Overrun

Execution time with no interrupts

DiskDiskEthernetEthernet

Execution time with interrupts time

Scheduling Interrupt
Other I/O System Clock

User Code

Execution time with no interrupts

DiskDiskEthernetEthernet

Execution time with interrupts time

Scheduling Interrupt
Other I/O System Clock

User Code

HIL I/O Task
Normal

Execution Time

time

Host Scheduling
Interrupt

HIL
Scheduling
Interrupt

HILHIL
ProcessorProcessor

HILHIL
ProcessorProcessor

HIL I/O HIL I/O

HIL I/O Task
Execution Time

with delays

Too Late!
Too Late!
Too Late!

Host Scheduling
Interrupt

HIL
Scheduling
Interrupt

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 12 of 14 Compro Computer Services, Inc.

Improving Efficiency
Why are latency and determinism important to overall system efficiency? To ensure that all required work
executes in each allotted frame (that is, no “blown” frames) the system must be “sized” to accommodate a
worst-case task execution time.

When execution determinism is poor (that is, user code executes with excessive time variance),
accommodating system designs result in wasted CPU cycles (see Figure 11). Good execution determinism
minimizes wasted CPU cycles by accurately matching system capability with predictable performance
requirements, thereby improving efficiency.

Figure 11. System Efficiency Improvement

REAL-TIME ENVIRONMENT (RTE) SOLUTION

High Performance Interrupts
Using the Real-Time Option Module (RTOM) and associated Real-Time Extensions (comprising the Real-
Time Environment or RTE) results in extraordinary interrupt latency and determinism performance.

• Without RTE, average native operating system interrupt latency is approximately 60~100 µsec. With
RTE, latency is reduced to 10 µsec or less – a factor of 10x improvement.

• Without RTE, average native operating system determinism is ranges wildly from 200~1000 µsec. With
RTE, determinism is dramatically improved to less than 8µsec – a factor of 250x improvement.

Figure 11 above conservatively illustrates this performance. Note that standard UNIX-style figures indicate
average and typical times, with worst-case up to two hundred times slower. In contrast, Compro’s RTE
performance figures are tightly grouped around the indicated values.

Maximum Execution Time
of users code

Host Scheduling Interrupt

Typical Execution Time
of users code

Wasted
Cycles!

Most frames therefore,
have wasted CPU cycles

Host Scheduling Interrupt

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 13 of 14 Compro Computer Services, Inc.

Real-Time Configuration
This section integrates previous discussions concerning latency and determinism with the following
configuration considerations:

• Objective: Remove all unnecessary interrupts from the real-time execution path.

• Method:
⎯ Use a separate processor to run standard UNIX, performing system and application I/O.

⎯ Dedicate other processors to real-time tasks by locking the tasks to specific processors and
associated memory.

⎯ Turn off all interrupts to the targeted real-time processor set.

⎯ Turn on RTOM interrupts only for necessary real-time task communication to the target processor.

⎯ Use non-interrupting real-time I/O co-processor to pass data to the real-time target processor. This
may be used for internal transfers to shared memory regions, and Reflective Memory™ transfers
from other computers.

⎯ Vector only task-specific real-time interrupts to the target processor set.

The result is a Real-Time open system running a COTS UNIX style operating system with Compro’s Real-
Time Executive and Extensions. Figure 12 functionally illustrates this real-time environment (RTE).

Figure 12. Real-Time Environment (RTE)

Figure 13 graphically demonstrates how a cyclic-based application should operate. At t0, the scheduling
interrupt occurs at a programmed, consistent interval. The PCI Real-Time Option Module (PCI RTOM)
provides this scheduling interrupt, with programmable frequencies from 1 Hz to 10,000 Hz.

Real-Time Environment (RTE) White Paper October 2007

204-360-03 Page 14 of 14 Compro Computer Services, Inc.

Figure 13. Execution Determinism

At t1, the executive scheduler completes the context switch and the targeted task begins executing. The time
between t0 and t1 is the Interrupt Latency. The time between t1 and t2 is when the deterministic real-time
process on the CPU occurs. When the work completes at t2, the scheduling mechanism enters a wait state,
awaiting the next frame scheduling interrupt to occur at t0. The time between t2 and the next t0 is spare
frame time.

Controlling interrupt latency determinism and real-time process execution determinism delivers consistent
real-time performance each frame.

SUMMARY

Open system UNIX-style operating systems can provide a truly deterministic real-time environment suitable
for the most demanding simulation applications with the addition of the PCI Real-Time Option Module
(PCI-RTOM) and Real-Time Executive extensions. With this enhancement, measured interrupt latency is 10
microseconds with four microseconds of determinism, resulting in an ideal platform for hosting high fidelity
applications.

The PCI-RTOM, Real-Time Executive Scheduler, and operating system POSIX compliance enables features
providing real-time support. These allow the programmer to:

• Precisely control when actions will occur.

• Connect actions to time-based triggers.

• Schedule multiple tasks using a strict, priority-based FIFO mechanism.

These ensure critical real-time tasks that are executed precisely and efficiently!

Execution
Time E1

frame 1 frame 2 frame 3

time

Scheduling Interrupt

Execution
Time E2

Execution
Time E3

RT ProcessRT Process RT Process

t0 t1 t2 t0 t1 t2 t0 t1 t2

Scheduling Interrupt Scheduling Interrupt

