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INTRODUCTION 

UNIX-style (UNIX, Linux) operating system environments are robust, versatile and well suited for use in 
business and scientific applications.  However, the UNIX Universal Time Share Executive Process Scheduling 
Mechanism is not ideally suited for applications requiring very fast, predictable process execution such as 
hardware-in-the-loop and human-in-the-loop simulations.  A scheduler suitable for real-time applications must 
execute processes with a “priority-oriented preemptive mechanism” for repeatable behavior and efficiency.  
This is necessary for today’s high-performance, real-time simulation systems. 

Simulator examples include high fidelity Weapons or Flight Systems Trainers.  These systems must 
accurately represent the real device.  When a simulator provides good fidelity (that is, the simulation and real-
world are nearly indistinguishable), it “positively” trains a person resulting in specific, desired behaviors.  If a 
simulator lacks fidelity, undesirable behavior modification may result in a “negative” training experience. 

Some proprietary operating systems target embedded computer systems, requiring a completely different 
environment for simulation code development.  Two examples are LynxOs® and VxWorks.  With Compro’s 
value-add, UNIX style operating systems now deliver real-time determinism; real-time programmable 
hardware clocks, multiple external interrupts and a fast interrupt vectoring mechanism.  This unified 
development/execution capability eliminated the need for LynxOS or VxWorks.  You can now develop, test, 
and deploy real-time applications entirely on Open System platforms while enjoying scalability, compute 
power, and a world-class software suite. 

Compro’s value-add is the Real-Time Environment (RTE) consisting of PCI Real-Time Option Module(s) 
(RTOMs) with Real-Time Executive extensions.  Compro’s RTE and POSIX-compliant operating system 
combination provides a complete support package.  This allows the software engineer to:  

• Control when actions will occur. 

• Connect actions to time-based triggers. 

• Schedule multiple tasks using a strict, priority-based FIFO mechanism.  
  

These ensure precise and efficient critical real-time task execution. 

This white paper explores computer system behavior and how UNIX-style operating systems using Compro’s 
Real-time Environment (RTE) address the high fidelity simulation community’s requirements. 

  

REAL-TIME AND THE NETWORK 

In Distributed Interactive Simulation (DIS) environments, real-time events and user interaction often cause 
message passing across an Intranet (LAN), Internet (WAN) or between processors in a Symmetric Multi-
Processor (SMP) environment.  These messages represent critical “data exchange” essential for an 
application’s realistic real-world representation.  In a distributed non-real-time system (such as an office 
environment), computer architects view keyboard input queuing, mouse operations, or network packets as 
more important than critical data exchange.   

Non-real-time systems immediately respond to non-critical events at high priority.  In this environment, 
network message processing with First-In/First-Out (FIFO) precedence is essential for “equitable 
responsiveness” to multiple users.  This methodology assures that all users obtain reasonable response 
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times, providing the illusion of “near real-time” performance.  However, used in simulation system design this 
methodology is detrimental to process determinism, simulation fidelity and reliable data collection. 

Message passing, through TCP/IP and similar mechanisms, creates tremendous overhead for processors 
and networks.  Message interrupts impose significant CPU loads through process scheduling mechanisms, 
protocol handshaking and data integrity assurance (that is, packet retransmission).  Any time an Ethernet 
packet arrives, it must be filtered or locally queued.   

In response, the process interrupts the CPU for message processing.  In addition, TCP/IP delivery 
mechanisms generate signals (interrupts that require scheduling and servicing), further consuming precious 
computing cycles.  Standard UNIX style operating systems are designed for processing thousands of network 
messages and simultaneous user inputs from keyboards and mice, with little regard for system resource 
utilization (such as CPU cycles) critical to simulation code execution.   

Open system SMP technology supports key components that solve interrupt management problems.  These 
operating systems use a multithreaded kernel permitting simultaneous multiple processes execution.  The 
kernel protects key data structures and critical code with semaphores and spin-locks, preserving their 
integrity.  Processes executing in a multithreaded kernel can be forced to relinquish the CPU; in other words, 
processes can be “preempted.” 

In a preemptive environment, the kernel can transfer CPU control from a lower to a higher priority process.  
This permits a high priority process, waiting for an external event, to respond immediately when the event 
occurs — even if the CPU is currently in use.  This is a significant benefit in real-time architecture. 

  

WHAT IS REAL-TIME? 

According to the POSIX 1003.1b standard, real-time in operating systems is defined as: 

 

“The ability of the operating system to provide a required level of service in a bounded response time." 
 

All modern Commercial-Off-The-Shelf (COTS) computer systems have approximately one nanosecond or 
less CPU clock cycle times while their associated operating system software runs at approximately one 
millisecond cycle times.  This means COTS computers have operating system software one million times 
slower than the raw capability of their processors (see Table 1).  This does not promote real-time 
performance. 

Table 1. Time Reference Table 

Description Part of a Second Cross-Reference 

Millisecond (msec) .001 1/1,000 10-3 1/1000 of a second 

Microsecond (μsec) .000001 1/1,000,000 10-6 1/1000 of a millisecond 

Nanosecond (nsec) .000000001 1/1,000,000,000 10-9 1/1000 of a microsecond 
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Today's demanding real-time applications must capitalize upon raw processing power beyond standard 
operating systems.  Processes that must complete in microseconds cannot be timed and controlled by 
software that operates in milliseconds. 

 

Real-Time with Frame Driven and Event Driven Interrupts 
The following two examples are common interrupt methods used in real-time systems. 

• A Frame Scheduling interrupt (see Figure 1) gates process execution at a predetermined rate.  This cyclic 
interval is a “frame.”  Real-world examples of “Frame Driven” scheduling interrupts with various driving 
frequencies are shown in Table 2 below. 

 

 

Figure 1. Frame Scheduling Interrupt 

 

Table 2. Example Frame Rates 

Example Function Frequency Frame Time 

Missiles, Sensors 4800 Hz 208 μsec 

Digital Control Loading 1000 Hz 1,000 μsec 

Flight Simulator 60 Hz 16,667 μsec       

 

• An “Event Driven Scheduling Interrupt” (see Figure 2) is random asynchronous missile firing, simulating a 
missile launch and/or missile hardware stimulation that interacts with a fixed simulation platform (also 
known as Hardware-In-the-Loop, or HIL).   

Time Scheduled Process (Frame Driven)

frame 1 frame 2 frame 3

time

Scheduling Interrupt

Real Time Task 1 Real Time Task 1 Real Time Task 1

Example: 60 Hz Simulation (16.67 millisecond Frame)

Scheduling Interrupt Scheduling Interrupt
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Figure 2. Event Scheduling Interrupt 

 

 

WHAT MAKES A COMPUTER A REAL-TIME COMPUTER? 

In real-time computing systems, the architectural objective is reducing the number of interrupts and managing 
asynchronous event response in a predictable fashion.  To achieve this objective, synchronous events occur 
at consistent intervals, and operating system housekeeping tasks (such as moving the cursor) occur using 
spare processing time.  This permits the simulation programmer to:  

1.  Have the computer perform the work for which it was purchased. 

2.  Keep operating system “housekeeping” functions in good working order.  

3.  Manage processes indirectly related to the applications.   
 

For these reasons, problems related to “determinism” and the way all software reacts or contributes to 
“indeterminism” must be controlled.  Giving engineers control over interrupt latency, interrupt latency 
determinism, and machine-level code execution determinism are major factors in controlling an 
“indeterministic” system. 

 

Interrupts: Friend or Fiend? 
As its name implies, an interrupt stops an executing CPU process and switches execution to the interrupting 
process.  This is called a context switch.   

When an interrupt occurs, the operating system must obey a set of rules to maintain functional integrity.  
These rules keep the operating system kernel responsive to all events within its design capacity, resulting in a 
“friendly” system.  If the rules are bent to improve system performance or exceed system capacity (that is, 
attempting real-time performance), the computer may misbehave and possibly crash with little explanation. 

In a typical distributed architecture, operator inputs compete for CPU cycles.  Additionally, network requests, 
data packet exchange, disk and graphic I/O, all compete for CPU cycles.  Servicing these tasks has a 
“fiendish” impact upon real-time performance.  Part of the solution for more manageable applications and 
better overall throughput in a real-time application is a multiple processor system.  However, it takes more 
than multiple CPUs to achieve acceptable real-time performance.  Interrupt latency, as discussed below, is 
another factor. 
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Interrupt Latency 
Interrupt latency is the time period between a received interrupt and associated user code execution.  For 
example, when a cyclic scheduler fires a scheduling interrupt at the beginning of each frame (t0), there is a 
delay before the frame code begins execution (t1).  (See Figure 3.) This delay is interrupt latency.   

The shorter the interrupt latency, the less the CPU is consumed with interrupt processing.  This means more 
CPU cycles are available for processing useful application code before the next scheduled interrupt.  

Interrupt latency is often confused with an incomplete measurement called interrupt response.  Interrupt 
response is only the time required for interrupt receipt and kernel queuing [t0 + (t1-n)].  Interrupt latency 
includes interrupt response time, plus queue processing time, plus time until user code execution. 

Figure 3. Interrupt Latency 

 

Interrupt Latency Determinism 
Determinism is consistency.  Interrupt latency determinism is the consistency of interrupt latency each time 
the computer responds to an interrupt.  Most vendors advertise their best achievable interrupt response or 
interrupt latency time.  However, this period can be as short as 10 microseconds or as long as 10 
milliseconds in the same one-frame period.  (See Figure 4.) 

Figure 4. Interrupt Latency Determinism 
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As shown in Figure 5, typical operating system design exacerbates interrupt latency by consuming processor 
cycles with aperiodic queue management and assorted system “housekeeping” interrupts.  In real-time 
applications these interrupts create control problems when minimum interrupt latency and solid determinism 
are essential.   

 
Figure 5. Interrupt Latency with/without System Interrupts 

 

Interrupt Vector Mechanism 
Part of the solution to this control problem is a “tunable pre-emptive” microkernel for quicker real-time 
response.  The microkernel schedules tasks on separate processors using a fast real-time interrupt vectoring 
mechanism.  

A tunable microkernel with a fast vector mechanism gives the applications programmer processor utilization 
control.  If an external real-time event needs immediate attention (such as a cyclic interrupt) the event will 
interrupt the designated processor and execute code per application program design.  This is done without 
waiting for the standard UNIX style time-share scheduler to allocate a servicing time-slice. 

Figure 6 illustrates two CPUs: one targeted for real-time applications (CPU 1) and the other for general 
system UNIX style functions (CPU 0).  CPU 0 fields aperiodic interrupts and manages the Real-Time Option 
Module (RTOM), which triggers periodic real-time tasks in CPU 1. 
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Figure 6. Target Real-Time Processor 
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Real-Time Custom Interrupt Environment (RCIE) 
Also available is the Real-Time Custom Interrupt Environment (RCIE) that can deliver extremely low latency 
interrupts with maximum determinism. (See Figure 7.)  This customization facilitates user code insertion at the 
kernel level (interrupt service routine) and can provide shared memory interaction with a user-level 
application.  “Ready-to-run” examples permit rapid RCIE implementation.   

 

Figure 7. Real-Time Custom Interrupt Environment 

 

When used judiciously, this powerful capability can provide significant performance enhancement.  Care must 
be taken while RCIE code is executing, because this is a system interrupt level and nothing else happens in 
the system until RCIE code completes.  More than a small amount of code, repeated many times, can cause 
excessive overhead. 

  

Execution Determinism 
Execution determinism is defined as the variance in user code execution time each time a specific program 
runs. See Figure 8. 

Figure 8. Code Execution Determinism 
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Variance occurs because the operating system performs different housekeeping tasks when diverse 
interrupts occur (like processing TCP/IP message traffic).  With respect to application code execution, the 
operating system is designed for asynchronous interrupt response.  Although the system clock is 
synchronous, peripheral I/O, network traffic and other system elements generate asynchronous interrupts 
resulting in code execution time variance.  (See Figure 9.) 

 

 

Figure 9. Interrupts During Code Execution 

 

SYSTEM PERFORMANCE 

Example of Non-Real-Time System 
When a simulation system includes a “Hardware-In-the-Loop” (HIL) device, inadequate spare frame time can 
profoundly affect performance.  For example, in actual Mil-Std 1553 implementations, the real-world device 
expects certain stimuli and response times.   

If the simulated system does not precisely mimic the real-world device, the simulation is ineffective.  This non-
deterministic behavior is sometimes called frame overrun or frame jitter.  In visual simulation systems, this is 
observed as a jerky or flashing image.  Figure 10 illustrates this problem. 

Figure 10. Frame Overrun 
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Improving Efficiency 
Why are latency and determinism important to overall system efficiency?  To ensure that all required work 
executes in each allotted frame (that is, no “blown” frames) the system must be “sized” to accommodate a 
worst-case task execution time.   

When execution determinism is poor (that is, user code executes with excessive time variance), 
accommodating system designs result in wasted CPU cycles (see Figure 11).  Good execution determinism 
minimizes wasted CPU cycles by accurately matching system capability with predictable performance 
requirements, thereby improving efficiency. 

 

 

Figure 11. System Efficiency Improvement 

 
 

REAL-TIME ENVIRONMENT (RTE) SOLUTION 

High Performance Interrupts 
Using the Real-Time Option Module (RTOM) and associated Real-Time Extensions (comprising the Real-
Time Environment or RTE) results in extraordinary interrupt latency and determinism performance.   

• Without RTE, average native operating system interrupt latency is approximately 60~100 µsec.  With 
RTE, latency is reduced to 10 µsec or less – a factor of 10x improvement.   

• Without RTE, average native operating system determinism is ranges wildly from 200~1000 µsec.  With 
RTE, determinism is dramatically improved to less than 8µsec – a factor of 250x improvement. 

 

Figure 11 above conservatively illustrates this performance.  Note that standard UNIX-style figures indicate 
average and typical times, with worst-case up to two hundred times slower.  In contrast, Compro’s RTE 
performance figures are tightly grouped around the indicated values. 
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Real-Time Configuration 
This section integrates previous discussions concerning latency and determinism with the following 
configuration considerations: 

• Objective: Remove all unnecessary interrupts from the real-time execution path. 

• Method: 
⎯ Use a separate processor to run standard UNIX, performing system and application I/O. 

⎯ Dedicate other processors to real-time tasks by locking the tasks to specific processors and 
associated memory.  

⎯ Turn off all interrupts to the targeted real-time processor set. 

⎯ Turn on RTOM interrupts only for necessary real-time task communication to the target processor. 

⎯ Use non-interrupting real-time I/O co-processor to pass data to the real-time target processor.  This 
may be used for internal transfers to shared memory regions, and Reflective Memory™ transfers 
from other computers. 

⎯ Vector only task-specific real-time interrupts to the target processor set. 
 

The result is a Real-Time open system running a COTS UNIX style operating system with Compro’s Real-
Time Executive and Extensions.  Figure 12 functionally illustrates this real-time environment (RTE). 

 
Figure 12. Real-Time Environment (RTE) 

 

Figure 13 graphically demonstrates how a cyclic-based application should operate.  At t0, the scheduling 
interrupt occurs at a programmed, consistent interval.  The PCI Real-Time Option Module (PCI RTOM) 
provides this scheduling interrupt, with programmable frequencies from 1 Hz to 10,000 Hz.   
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Figure 13. Execution Determinism 

 

At t1, the executive scheduler completes the context switch and the targeted task begins executing.  The time 
between t0 and t1 is the Interrupt Latency.  The time between t1 and t2 is when the deterministic real-time 
process on the CPU occurs.  When the work completes at t2, the scheduling mechanism enters a wait state, 
awaiting the next frame scheduling interrupt to occur at t0.  The time between t2 and the next t0 is spare 
frame time. 

Controlling interrupt latency determinism and real-time process execution determinism delivers consistent 
real-time performance each frame. 

 

SUMMARY 

Open system UNIX-style operating systems can provide a truly deterministic real-time environment suitable 
for the most demanding simulation applications with the addition of the PCI Real-Time Option Module  
(PCI-RTOM) and Real-Time Executive extensions.  With this enhancement, measured interrupt latency is 10 
microseconds with four microseconds of determinism, resulting in an ideal platform for hosting high fidelity 
applications.   

The PCI-RTOM, Real-Time Executive Scheduler, and operating system POSIX compliance enables features 
providing real-time support.  These allow the programmer to:  

• Precisely control when actions will occur. 

• Connect actions to time-based triggers.  

• Schedule multiple tasks using a strict, priority-based FIFO mechanism.   
 

These ensure critical real-time tasks that are executed precisely and efficiently! 
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